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We propose the multiple LUT cascade as a means to configure an n-input LPM (Longest Prefix
Match) address generator commonly used in routers to determine the output port given an address.
The LPM address generator accepts n-bit addresses which it matches against k stored prefixes.
We implement our design on a Xilinx Spartan-3 FPGA for n = 32 and k = 504 ∼ 511. Also, we
compare our design to a Xilinx proprietary TCAM (ternary content-addressable memory) design and
to another design we propose as a likely solution to this problem. Our best multiple LUT cascade
implementation has 5.17 times more throughput, 40.71 times more throughput/area and is 2.97 times
more efficient in terms of area-delay product than Xilinx’s proprietary design, but its area is only
15% of Xilinx’s design. Furthermore, we derive a method to determine the optimum configuration of
the multiple LUT cascade on an FPGA.
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1 Introduction

The need for higher internet speeds is likely to be the subject of intense interest
for many years to come. A network’s speed is directly related to the speed with
which a node can switch a packet from an input port to an output port. This,
in turn, depends on how fast a packet’s address can be accessed in memory.
The longest prefix match (LPM) problem is one of determining the output
port address from a list of prefix vectors stored in memory. For example,
if the prefix vector 01001**** is stored in memory, then the packet address
010011111 matches this entry. That is, each bit in the packet address matches
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exactly the corresponding bit in the prefix vector or there is a * or don’t care in
that position. If other stored prefixes match the packet address, then the prefix
with the least don’t care values determines the output port address. That is,
the memory entry corresponding to the longest prefix match determines the
output port.

An ideal device for this application is a ternary content-addressable
memory (TCAM) (Pagiamtzis et al. 2006, Song et al. 2005). The descriptor
”ternary” refers to the three values stored, 0, 1, and *. In (Kasnavi et al.
2005), the authors proposed pipelined TCAMs for the longest prefix match to
increase TCAM efficiency. In (Wang et al. 2005), the authors used a TCAM
and a small DRAM for the longest prefix match to reduce the required size
of TCAM. Unfortunately, TCAM still dissipates more power than standard
RAM (Renesas 2005).

Several authors have proposed the use of standard RAM in LPM de-
sign. Gupta, Lin, and McKeown showed a mechanism to perform LPM
every memory access (Gupta et al. 1998). Dharmapurikar, Krishnamurthy,
and Taylor have proposed the use of Bloom filters to solve the LPM
problem (Dharmapurikar et al. 2003). Sasao and Butler have shown that
a fast, power-efficient TCAM realization using a look-up table (LUT) cas-
cade (Sasao et al. 2006).

In this paper, we propose an extension to the LUT cascade realization:
a multiple LUT cascade realization that consists of multiple LUT cascades
connected to a special encoder. This offers even more efficient realizations in
an architecture that is more easily reconfigured when additional prefix vectors
are placed in the prefix table.

We have implemented six LPM address generators on the Xilinx Spartan-3
FPGA (XC3S4000-5): Four using multiple LUT cascades, one using Xilinx’s
TCAM realization based on the Xilinx IP core, and one using registers and
gates. In addition, we compare the six LPM address generators on the basis of
delay, delay-area product, throughput, throughput/area, and FPGA resources
used.

A preliminary version of this paper was presented at ARC2006 (Qin et al.
2006). We extend these results by introducing the optimum configuration of
the multiple LUT cascade, and by showing how to realize the optimum multiple
LUT cascade on an FPGA.

The rest of the paper is organized as follows: Section 2 describes the multiple
LUT cascade. Section 3 shows other realizations for the LPM address gener-
ators. Section 4 presents the implementations of the LPM address generator
using an FPGA. Section 5 shows the experimental results. Section 6 discusses
the optimum configuration of the multiple LUT cascade implemented on an
FPGA. And finally, Section 7 concludes the paper.
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Table 1. LPM table.
Address Prefix Vector

1 1000
2 010*
3 01**
4 1***
5 0***

Table 2. LPM function.
Output Output

Input Address Input Address
0000 5 1000 1
0001 5 1001 4
0010 5 1010 4
0011 5 1011 4
0100 2 1100 4
0101 2 1101 4
0110 3 1110 4
0111 3 1111 4

2 Multiple LUT cascades

2.1 LPM address generators

A content-addressable memory (CAM) (Shafai et al. 1998) stores 0’s and 1’s
and produces the address of the given data. A TCAM, unlike a CAM, stores
0’s, 1’s, and *’s, where * is a don’t care value that matches both 0 and 1.

TCAMs are extensively used in routing tables for the internet. A routing
table specifies an interface identifier corresponding to the longest prefix that
matches an incoming packet, in a process called Longest Prefix Match
(LPM). In the LPM table, the ternary vectors have restricted patterns: the
prefix consists of only 0’s and 1’s, and the postfix consists of only *’s (don’t
cares). In this paper, this type of vector is called a prefix vector.

Definition 2.1 An n-input m-output k-entry LPM table stores k n-element
prefix vectors. To assure that the longest prefix address is produced, TCAM
entries are stored in descending prefix length, and the first match starting from
the top of the table determines the LPM table’s output. An address is an m-
element binary vector for m = �log2(k + 1)�, where �a� denotes the smallest
integer greater than or equal to a. The corresponding LPM function is a
logic function f : Bn → Bm, where f(

→
x) is the smallest address of an entry

that is identical to
→
x except possibly for don’t care values. If no such entry

exists, f(
→
x) = 0m. The LPM address generator is a circuit that realizes

the LPM function.

Example 2.2 Table 1 shows an LPM table with 5 4-element prefix vectors.
Table 2 shows the corresponding LPM function. It has 16 entries, one for each
4-bit input. The output address is stored for each input corresponding to the
address of the longest prefix vector that matches it. �

2.2 An LUT cascade realization of LPM address generators

An LPM function, such as that shown in Table 2, can be realized by a sin-
gle memory which operates as a programmable combinational logic circuit.



November 26, 2006 12:58 International Journal of Electronics lpm˙IJE

4 Hui Qin, Tsutomu Sasao, and Jon T. Butler

However, this often requires prohibitively large memory size.

Theorem 2.3 (Sasao 2006) An n-input LPM address generator with k prefix
vectors can be realized by an LUT cascade, where each cell realizes a p-input,
r-output combinational logic function. Let s be the necessary number of levels
or cells. Then,

s ≤
⌈

n − r

p − r

⌉
, (1)

where p > r and r = �log2(k + 1)�.

2.3 LPM address generators using the multiple LUT cascade

A single LUT cascade realization of an LPM function often requires many
levels. Since the delay is proportional to the number of levels in a cascade, we
wish to reduce the number of levels. According to (1), if we increase p, the
number of inputs to each cell, then the number of levels s is reduced. For each
increase by 1 of p, the memory needed to realize the cell is doubled. However,
as shown in Figure 1, we can use a multiple LUT cascade to reduce the number
of levels s while keeping p fixed. For an n-input LPM function with k prefix
vectors, let the number of rails of each LUT cascade be r. First, starting at
the top of the LPM table, partition the set of prefix vectors into g groups of
2r − 1 vectors each, except the last group, which has 2r − 1 or fewer vectors,
where g = � k

2r−1�. For each group of prefix vectors, form an independent LPM
function. Next, partition the set of n inputs into s groups. The inputs within
a group will apply to a single cell within each cascade. Then, realize each
LPM function by an LUT cascade. Thus, we need a total of g LUT cascades,
where each LUT cascade consists of s cells. Finally, use a special encoder to
produce the LPM address. Let vi (i = 1, 2, ..., g) be the i-th input of the special
encoder from the i-th LUT cascade, and let vout be the output value of the
special encoder. That is, vi is the output value of the i-th LUT cascade, where
its binary output values are viewed as a standard binary number. Similarly,
vout is the output of the special encoder, where its binary output values are
viewed as a standard binary number. Then, we have the relation:

vout =
{

vi + (i − 1)(2r − 1) if vi �= 0 and vj = 0 for all 1 ≤ j ≤ i − 1
0 if vi = 0 for all 1 ≤ i ≤ g.

Note that vout is the position of a prefix vector v in the complete LPM table,
while i is the index to the LUT cascade storing v. (i−1)(2r−1) is the position
in the LPM table of the last entry of the previous (i − 1)-th LUT cascade or
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is 0 in the case of the first LUT cascade. Adding vi to this yields the position
of v in the complete LPM table.

Example 2.4 Consider an n-input LPM function with k prefix vectors. When
k = 1000 and n = 32, by Theorem 2.3, we have r = 10. Let p = r + 1 = 11.
When we use a single LUT cascade to realize the function, by Theorem 2.3,
we need �n−r

p−r � = 22 cells, and the number of levels of the LUT cascade is also
22. Since each cell has 11 address lines and 10 outputs, the total memory size
needed to realize the cascade is 211 × 10 × 22 = 450, 560 bits. Note that the
memory size of each cell, 211 × 10 = 20, 480 bits, is too large to be realized by
a single block RAM (BRAM) of our FPGA, which stores 18, 432 bits.

However, if we use a multiple LUT cascade to realize the function, we can
reduce the number of levels and the total memory. Also, the cells will fit
into the BRAMs in the FPGAs. Partition the set of vectors into two groups,
and realize each group independently; this requires two LUT cascades. For
each LUT cascade, the number of vectors is 500, so we have r = 9. Also, let
p = r + 2 = 11. Then, we need �n−r

p−r � = 12 cells in each cascade. Note that
the number of levels of the LUT cascades is 12, which is smaller than the
22 needed in the single LUT cascade realization. Since each cell consists of a
memory with 9 outputs and at most 11 address lines, the total memory size is
at most 211×9×12×2 = 442, 368 bits. Also, note that the size of the memory
for a single cell is 211 ×9 = 18, 432 bits. This fits exactly in the BRAMs of the
FPGAs.

Thus, the multiple LUT cascade not only reduces the number of levels and
the total memory, but also reduces the size of cells to fit into the available
memory in the FPGAs. �

Fig. 1 shows the multiple LUT cascade realization. It consists of multi-
ple LUT cascades and a special encoder. The inputs of each LUT cascade are
common with other LUT cascades, while the outputs of each LUT cascade are
connected to the special encoder. Each LUT cascade realizes an LPM func-
tion, while the special encoder generates the LPM address from the outputs
of cascades.

The detailed design of each LUT cascade is shown in Fig. 2. Here
→
x i (i =

1, 2, ..., s) denotes the primary inputs to the i-th cell,
→
d i (i = 1, 2, ..., s) denotes

the data inputs to the i-th cell and provides the data value to be written in the
RAM of the i-th cell, r denotes the number of rails, where r ≤ �log2(

k
g + 1)�,

→
c j (j = 2, 3, ..., s) denotes the additional inputs to the j-th cell and is used
to select the RAM location along with

→
x j for write access. Note that

→
c j and

→
d i are represented by r bits. All RAMs except perhaps the last one have p
address lines; the last RAM has at most p address lines. When WE is high,
→
c j is connected to the RAM through a MUX, allowing data to be written into
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Figure 1. Architecture of the multiple LUT cascade.
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Figure 2. Detailed design of the LUT cascade.

Table 3. 6-entry LPM table.

Address Prefix Vector
1 100000
2 10010*
3 1010**

4 101***
5 10****
6 1*****

Table 4. Truth table for the corresponding LPM function.

Input Output LUT
x1 x2 x3 x4 x5 x6 out2 out1 out0 Cascade
1 0 0 0 0 0 0 0 1 Upper
1 0 0 1 0 * 0 1 0 Cells 1
1 0 1 0 * * 0 1 1 and 2
1 0 1 1 * * 1 0 0 Lower
1 0 0 * * * 1 0 1 Cells 3
1 1 * * * * 1 1 0 and 4

the RAMs. When WE is low, the outputs of the RAMs are connected to the
inputs of the succeeding RAMs through a MUX, and the circuit is a cascade
that realizes the LPM function. Note that the RAMs are synchronous RAMs.
Therefore, the LUT cascade resembles a shift register.

Example 2.5 Table 3 shows a 6-input 3-output 6-entry LPM table, and the
truth table of the corresponding LPM function is shown in Table 4. Note
that the entries in the two tables are similar. Table 4 is a compact truth table,
showing only non-zero outputs. Its input combinations must be disjoint. Thus,
the two tables are the same except for three entries.
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Figure 3. Single LUT cascade realization and the multiple LUT cascade realization.

Single Memory Realization: The number of address lines is 6, and the
number of outputs is 3. Thus, the total amount of memory is 26 × 3 = 192
bits.

Single LUT Cascade Realization: Since there are k = 6 prefix vectors,
by Theorem 2.3, the number of rails is r = �log2 (6 + 1)� = 3. Let the number
of address lines for the memory in a cell be p = 4. By partitioning the inputs
into three disjoint sets {x1, x2, x3, x4}, {x5}, and {x6}, we have the cascade in
Fig. 3 (a). For simplicity, only the signal lines for the cascade realization are
shown. Other lines, such as for storing data, are omitted.

The total amount of memory is 24 × 3 × 3 = 144 bits, and the number of
levels is s = 3. Note that the single LUT cascade requires 75% of the memory
needed in the single memory realization.

Multiple LUT Cascade Realization: Partition Table 3 into two parts,
each with three prefix vectors. The number of rails in the LUT cascades as-
sociated with each separate LPM table is �log2 (3 + 1)� = 2. Let the number
of address lines for the memory in a cell be p = 4. By partitioning the inputs
into two disjoint sets {x1, x2, x3, x4} and {x5, x6}, we obtain the realization in
Fig. 3 (b). The upper LUT cascade realizes the upper part of the Table 4, while
the lower LUT cascade realizes the lower part of the Table 4. The contents of
each cell is shown in Table 5.

Let v1 be the output value of the upper LUT cascade, let v2 be the output
value of the lower LUT cascade, and let vout be the output value of the special
encoder. Then, in Table 5, (z1, z2) viewed as a standard binary number, has
value v1, while (z3, z4) viewed as a standard binary number, has value v2. The
special encoder generates the LPM address from the pair of outputs, (z1, z2)
and (z3, z4) :

out2 = z̄1z̄2(z3 ∨ z4),
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Table 5. Truth tables for the cells in the multiple LUT cascade realization.

Cell 1 and Cell 2 (upper LUT cascade) Cell 3 and Cell 4 (lower LUT cascade)
x1 x2 x3 x4 y1 y2 x5 x6 z1 z2 v1 vout x1 x2 x3 x4 y3 y4 x5 x6 z3 z4 v2 vout

1 0 0 0 0 0 0 0 0 1 1 001 1 0 1 1 0 0 * * 0 1 1 100
1 0 0 1 0 1 0 * 1 0 2 010 1 0 0 * 0 1 * * 1 0 2 101
1 0 1 0 1 0 * * 1 1 3 011 1 1 * * 1 0 * * 1 1 3 110
Other values 1 1 * * 0 0 0 † Other values 1 1 * * 0 0 0 †

Other values 0 0 0 † Other values 0 0 0 †
† depends on values from the other LUT cascade.

out1 = z1 ∨ z̄2z3z4,

out0 = z2 ∨ z̄1z3z̄4.

Note that (out2, out1, out0) viewed as a standard binary number, has value vout

corresponding to the address in Table 3. The total memory size is 24×2×4 =
128 bits, and the number of levels is 2. Note that the multiple LUT cascade
realization requires 89% of the memory and one fewer level than the single
LUT cascade realization. �

3 Other realizations

3.1 Xilinx’s TCAM

Xilinx (Website of Xilinx) provides a proprietary realization of a TCAM that
is produced by the Xilinx CORE Generator tool. Since a TCAM can directly
realize an LPM address generator, we compare our proposed multiple LUT
cascade realization with Xilinx’s TCAM. In the Xilinx CORE Generator 7.1i,
we used the following parameters to produce TCAMs.

• Implementation: SRL16.
• Mode: Standard ternary mode to generate a standard ternary CAM.
• Depth: k, the number of words or vectors stored in the TCAM.
• Data width: n, the number of bits in words or vectors.
• Match Address Type: Binary encoded.
• Address Resolution: Lowest.

3.2 Registers and gates

We also compare our proposed multiple LUT cascade realization with a direct
realization using registers and gates, as shown in Fig 4. We use a register pair
(Reg. 1 and Reg. 0) to store each digit of a ternary vector. For example, if
the digit is * (don’t care), the register pair stores (1,1). Thus, for n bit data,
we need a 2n-bit register. The comparison circuit consists of an n-input AND
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Figure 4. Realization of the address generator with registers and gates.

gate and n 1-bit comparison circuits, each of which produces a 1 if and only if
the input bit matches the stored bit or the stored bit is don’t care (* or 11).

For each prefix vector of an n-input LPM address generator, we need a 2n-
bit register, n 1-bit comparison circuits, and an n-input AND gate. For an
n-input address generator with k registered prefix vectors, we need k 2n-bit
registers, nk 1-bit comparison circuits, and k n-input AND gates. In addition,
we need a priority encoder with k inputs and �log2 (k + 1)� outputs to generate
the LPM address. If the n-input AND gate is realized as a cascade of 2-input
AND gates, this circuit can be considered as a special case of the multiple LUT
cascade architecture, where r = 1, p = 2, and g = k. Note that the output
encoder circuit is a standard priority encoder.

4 FPGA implementations

We implemented the LPM address generators for 32 inputs and 504∼511 regis-
tered prefix vectors on Xilinx Spartan-3 FPGAs (XC3S4000-5) in three ways,
the multiple LUT cascade, Xilinx CORE Generator 7.1i, and registers and
gates. XC3S4000-5 (Spartan-3 FPGA data sheet 2005) has 96 BRAMs and
27,648 slices. Each BRAM contains 18K bits, and each slice consists of two
4-input LUTs, two D-type flip-flops, and multiplexers. For each implementa-
tion, we described the circuit by Verilog HDL, and then used Xilinx ISE 7.1i
to synthesize and to perform place and route.

First, we used the multiple LUT cascade to realize the LPM address gener-
ators. To use the BRAMs in the FPGA efficiently, we chose the memory size
of a cell in the LUT cascade not to exceed the size of a BRAM unit. Let p be
number of address lines of the memory in the cell. Since each BRAM contains
211×9 bits, we have the relation: 2p ·r ≤ 211×9, where r is the number of rails.
Thus, we have p = �log2 (9/r)	+ 11, where �a	 denotes the largest integer less
than or equal to a.
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Table 6. Four multiple LUT cascade realizations.

Design Number of prefix vectors r p Group Level
r6p11 504 6 11 8 6
r7p11 508 7 11 4 7
r8p11 510 8 11 2 8
r9p11 511 9 11 1 12
r: Number of rails
p: Number of address lines of the RAM in a cell
Group: Number of LUT cascades
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Figure 5. Realization of r8p11.

We designed four LPM address generators r6p11, r7p11, r8p11, and r9p11,
as shown in Table 6, where the column Number of prefix vectors denotes
the number of registered prefix vectors, the column r denotes the number of
rails, the column p denotes the number of address lines of the RAM in a cell,
the column Group denotes the number of LUT cascades, and the column
Level denotes the number of levels or cells in the LUT cascade.

To explain Table 6, consider r8p11 which is shown in Fig 5. For r8p11, since
the number of rails is r = 8, the number of groups is � 510

28−1� = 2. Thus, we need
two LUT cascades. Since each LUT cascade consists of 8 cells, the number of
levels of r8p11 is 8. To efficiently use BRAMs in the FPGA, the number of
address lines of the RAM in the cell is set to p = �log2 (9/8)	+ 11 = 11. Let
v1 be the value of the outputs of the upper LUT cascade, let v2 be the value of
the outputs of the lower LUT cascade, and let vout be the value of the outputs
of the special encoder. Then, we have the relation:

vout =
{

v2 + 255 if v1 = 0 and v2 �= 0,
v1 otherwise.

The circuit realizing this expression requires 11 slices on the FPGA. For the
whole circuit, r8p11 requires 16 BRAMs and 69 slices. From this table, we
can see that decreasing r, increases the number of groups, but decreases the
number of levels.

Next, we used the Xilinx CORE Generator 7.1i tool to produce Xilinx’s
TCAM. Since the Xilinx CORE Generator 7.1i does not support TCAMs with
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32 inputs and 505∼511 registered prefix vectors, we designed a TCAM with 32
inputs and 504 registered prefix vectors. The resulting TCAM required 8,590
slices. Note that Xilinx’s TCAM requires one clock cycle to find a match.

Finally, we designed the LPM address generator with n = 32 inputs and
k = 511 registered prefix vectors using registers and gates, as shown in Fig 4.
This design is denoted Reg-Gates. Note that the number of inputs is 32 and
the number of outputs is 9. This design required 27,646 slices.

5 Performance and comparisons

In Table 7, we show the performance of multiple LUT cascade realizations (i.e.,
r6p11, r7p11, r8p11, and r9p11), and compare them with Xilinx’s TCAM and
Reg-Gates. In Table 7, the column Level denotes the number of levels or
cells in the LUT cascade, the column Slice denotes the number of occupied
slices, the column Memory denotes the amount of memory required, and
the column F clk denotes the maximum clock frequency. The column tco
denotes the maximum clock-to-output propagation delay. (It is the maximum
time required to obtain a valid output at the output pin that is fed by a register
after a clock signal transition on an input pin that clocks the register). The
column tpd denotes the maximum propagation time from the inputs to the
outputs. The column Th. denotes the maximum throughput. Since the LPM
address generator has 9 outputs, it is calculated as:

Th. = 9 · F clk.

For Reg-Gates, Delay denotes the maximum delay from the input to the
output and is equal to tpd. For multiple LUT cascade realizations and Xilinx’s
TCAM, Delay denotes the total delay, and is calculated by:

Delay =
1000 · Level

F clk
+ tco,

where 1000 is a unit conversion factor.
Consider the area occupied by the various realizations. From the Spartan-3

family architecture (Spartan-3 FPGA data sheet 2005), we can see that the
area of one BRAM is at least the area of 16 slices (a slice consists of two
“4-input LUTs”, two flip-flops, and miscellaneous multiplexers).

An alternative estimate shows that the area of one BRAM is equivalent to
that of 96 slices, as follows. In the Xilinx Virtex-II FPGA, one “4-input LUT”
occupies approximately the same area as 96 bits of BRAM (also containing
18K bits) (Sproull et al. 2005). Note that both “4-input LUTs” and BRAMs
of the Virtex-II FPGA are similar to those of the Spartan-3 FPGA. Thus,
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Table 7. Comparisons of FPGA implementations of the LPM address generator.

Design Level Slice Memory F clk tco/tpd Th. Areaa Th./Area Delay Area-Delay

(BRAM) (MHz) (ns) (Mbps) (slice) (
Mbps
slice

) (ns) (slice-µs)

r6p11 6 178 48 103.89 24.89 935 4786 0.195 82.64 395.53
(tco)

r7p11 7 116 28 113.77 23.46 1024 2804 0.365 84.99 238.31
(tco)

r8p11 8 69 16 139.93 20.91 1259 1605 0.785 79.57 127.71
(tco) (best)

r9p11 12 99 12 139.08 13.72 1252 1251 1.001 100.00 125.10
(tco) (best) (best) (best)

Xilinx’s 1 8590 22.52 13.48 203 8590 0.024 57.88 497.23
TCAM (tco) (best)
Reg- 27646 58.67 27646 58.67 1621.99
Gates (tpd)

aWe assume that the area for one BRAM is equivalent to the area of 96 slices.

we can deduce that one BRAM of the Spartan-3 FPGA occupies about the
same area as 192 (= 18 × 1024/96) “4-input LUTs”. If we view one “4-input
LUT” as approximately one-half a slice according to our discussion in the
previous paragraph, we conclude that one BRAM has about the same area as
96 (= 192/2) slices. Thus, two estimates of the area for one BRAM, 16 and
96 slices are quite different. For this analysis, a worst case of 96 slices/BRAM
was used.

In Table 7, the column Area denotes the equivalent utilized area, where
the area for one BRAM is equivalent to the area for 96 slices. The column
Th./Area denotes the efficiency of throughput per area for one slice. The
column Area-Delay denotes the area-delay product. The value denoted by
best shows the best result.

Xilinx’s TCAM has the smallest delay, but requires many slices. Reg-Gates
has almost the same delay as Xilinx’s TCAM, but requires about three times
as many slices as Xilinx’s TCAM. Note that Reg-Gates requires no clock pulses
in the LPM address generation operation, while the others are sequential cir-
cuits that require clock pulses. Since the delay of Reg-Gates is 58.67 ns, the
equivalent throughput is (1000/58.67) × 9 = 153 (Mbps), which is lower than
all others.

All multiple LUT cascade realizations have higher throughput, smaller area,
higher throughput/area, and are more efficient in terms of area-delay than Xil-
inx’s TCAM. r8p11 has the highest throughput and the smallest delay among
all multiple LUT cascade realizations, but is slightly less efficient in terms
of area-delay than r9p11. r9p11 has the smallest area, the highest through-
put/area, and the highest efficiency in terms of area-delay among all realiza-
tions. Although r8p11 has almost the same area-delay as r9p11, its area is 28%
more larger than that of r9p11. Hence, r9p11 is the best multiple LUT cascade
realization since it has 5.17 times more throughput, 40.71 times more through-
put/area, and is 2.97 times more efficient in terms of area-delay product than
Xilinx’s TCAM, while the area is only 15% of Xilinx’s TCAM.
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Table 8. Memory-Delay for multiple LUT cascade realizations.

Design r6p11 r7p11 r8p11 r9p11
Area-Delay (slice-µs) 395.53 238.31 127.71 125.10
Memory-Delay (BRAM-µs) 3.97 2.38 1.27 1.20

6 The optimum configuration of the multiple LUT cascade

Firstly, consider the relation between the required memory size and the total
area. As can be seen from Table 7, for r6p11, which has the most complicated
encoder, the memory required occupies 96.3% (=48×96

4786 ) of the total area. For
r9p11, the memory required occupies 92.1% (=12×96

1251 ) of the total area. Note
that r9p11 has the smallest proportion of the area for memory to the total area
among all the multiple LUT cascade realizations. Thus, the memory consumes
no less than 92% of the total area. In addition, as shown in Table 7, the
size of Memory is approximately proportional to the Area. Hence, we can
assume that the multiple LUT cascade realization with the smallest memory
size corresponds to that with the smallest total area. Secondly, consider the
relation between Area-Delay and Memory-Delay product. As shown in Table 8,
r9p11 has both the smallest Area-Delay and the smallest Memory-Delay among
all multiple LUT cascade realizations. Note that the value of Memory-Delay
is approximately proportional to the Area-Delay. Thus, we can assume that
the realization with the smallest Memory-Delay corresponds to that with the
smallest Area-Delay. Therefore, we can use the total size of memory required
instead of the total area, and Memory-Delay instead of Area-Delay to find
the optimum multiple LUT cascade realization. Doing this allows a formal
analysis, as shown in the next section.

6.1 Total size of memory

Consider the multiple LUT cascade implementation of an n-input LPM ad-
dress generator that stores k prefix vectors. Let each cell be realized as a
reconfigurable memory with m bits. For the implementations discussed pre-
viously in this paper, this memory is a BRAM of the Spartan-3 FPGA,
where m = 18, 432 bits. Each cell in the LUT cascade has r outputs, where
r ≤ �log2(k + 1)�. With m bits stored in each memory and r bits per word, m

r
words are stored in each LUT cell. Therefore, the number of address inputs
for each LUT cell is p(r) = �log2

m
r 	. Note that r ≤ p(r)− 1. Let M(r) be the

total memory needed to implement the given LPM address generator. That
is,

M(r) = msg, (2)
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where s = � n−r
p(r)−r� is the number of cells in each of the g = � k

2r−1� cas-
cades that make up the multiple LUT cascade realization of the LPM address
generator.

Theorem 6.1 M(r) is a monotone decreasing function of r for r ≤ p(r)− 2.

Since M(r) is monotone decreasing for r ≤ p(r) − 2, to find the minimum
M(r), it is only necessary to find M(r) for r = p(r) − 2 and r = p(r) − 1, an
upper bound in r.

6.2 Memory-delay product

From Table 7, we observed that the delay in an n-input LPM address generator
is given approximately as

D =
1000
F clk

(s + 2), (3)

where F clk is the frequency of the clock in MHz. Let MD(r) be the memory-
delay product of the multiple LUT cascade realization of the address generator.
Therefore,

MD(r) = (msg)(
1000
F clk

(s + 2)), (4)

Theorem 6.2 MD(r) is a monotone decreasing function of r for r ≤ p(r)−5.
Specially, when p(r − 1) = p(r), MD(r) is a monotone decreasing function of
r for r ≤ p(r) − 3.

Since MD(r) is monotone decreasing for r ≤ p(r) − 5, to find the minimum
MD(r), it is only necessary to find MD(r) for r = p(r) − i, where i=1, 2, ...,
5, or for five values of r. Specially, when p(r− 1) = p(r), to find the minimum
MD(r), we only need to consider three cases for r = p(r) − i, where i=1, 2,
and 3.

6.3 Optimum multiple LUT cascade for the BRAM containing 18K
bits, 16K bits or 4K bits

In popular FPGAs, such as Xilinx’s FPGAs or Altera’s FPGAs, the sizes of
BRAM are 18K bits or 4K bits. For other FPGAs, the size of BRAM can be
16K bits. We consider these three types of BRAMs in the following discussion.

For 16K-bit BRAM, from p(r) = �log2 (16384/r)	, we have p(r) = 10 for
r = 9 and p(r) = 11 for 5 ≤ r ≤ 8. Since p(r − 1) = p(r) = 11 for 5 ≤ r ≤ 8,
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Table 9. The value of r that makes MD(r) minimum.

Block RAM size The minimum Memory-Delay
18K bits r = r max when r max ≤ 8

r = r optimal when r max = 9
4K bits r = r max when r max ≤ 6

r = r optimal when r max = 7
16K bits r = r max for r ≤ 8

r max is the maximum integer r that satisfies both r ≤ p(r) − 1
and r ≤ �log2 (k + 1)�, where p(r) = �log2

m
r
� and m denotes the

size of a BRAM.

r optimal is r that makes s ·g ·(s+2) minimum, where s = � n−r
p(r)−r

�
and g = � k

2r−1
�. For m = 18K-bit BRAM, r optimal can be

obtained by calculating values only for r = p(r) − 2 = 9 and
r = p(r)−3 = 8. For m = 4K-bit BRAM, r optimal can be obtained
by calculating values only for r = p(r)−2 = 7 and r = p(r)−3 = 6.

from Theorem 6.2, MD(r) decreases with r when 1 ≤ r ≤ (11 − 3) = 8.
Let ζ(r) = s · g · (s + 2), where s = � n−r

p(r)−r� and g = � k
2r−1�. We can verify

ζ(8) < ζ(9) when n > 15. In most applications, we can assume that n > 16.
Thus, we can conclude that MD(r) is minimum when r is maximum, where
r ≤ 8.

When the size of a BRAM is m = 18K bits, from p(r) = �log2 (9/r)	+11, we
have p(r) = 11 for 5 ≤ r ≤ 9. When m = 4K bits, from p(r) = �log2 (8/r)	+9,
we have p(r) = 9 for 5 ≤ r ≤ 8 and p(r) = 10 for r = 4. Thus, for both
m = 18K-bit and m = 4K-bit, we have p(r − 1) = p(r) when r ≤ p(r) − 5.
From Theorem 6.2, MD(r) is minimum when r = 11−2 = 9 or r = 11−3 = 8
for 18K-bit BRAM, and r = 9−1 = 8, r = 9−2 = 7, or r = 9−3 = 6 for 4K-bit
BRAM. We can verify ζ(6) < ζ(8) for 4K-bit BRAM when n > 14 . In most
applications, we can assume that n > 16. Thus, we only need to consider the
case of r = p(r)− 2. Depending on the values of n and k, MD(r) is minimum
when r = p(r) − 2 or r = p(r) − 3. However, for an LPM address generator
with fixed n and k, we can easily obtain an r that minimizes ζ(r) = s ·g ·(s+2)
by calculating the values for r = p(r) − 2 and r = p(r) − 3.

Table 9 shows the values of r that minimize MD(r) for three types of
BRAMs.

In Table 7, Area-Delay for r9p11 and r8p11 are nearly the same. Note that
when p = 11 and n = 32, ζ(p − 2) = 0.30 and ζ(p − 3) = 0.31 are almost the
same value.

For BRAM containing 18K bits, Theorem 6.1 shows that the area for r = 9
is smaller than for r = 8. If MD(r) for r = 9 is almost the same as for r = 8,
then the multiple LUT cascade is optimum when r = 9. Similar to 4K-bit
BRAM, if MD(r) for r = 7 and r = 6 are almost the same, then the multiple
LUT cascade is optimum when r = 7. The following example shows the design
of an optimum multiple LUT cascade.
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Figure 6. Optimum realization of r9p11g4.

Example 6.3 Consider an LPM address generator with n = 32 and k = 2040
implemented on a Spartan-3 FPGA. Note that the size of a BRAM is m = 18K
bits. First, from p(r) = �log2 (9/r)	 + 11, we have p(r) = 11 when 5 ≤ r ≤ 9.
To obtain the optimal Area-Delay realization, from Table 9, r can be 8 or 9
when n = 32 and k = 2040. Let ζ(r) = s · g · (s + 2). We have ζ(9) = 672, and
ζ(8) = 640. Note that ζ(9) is nearly the same as ζ(8). Since the area for r = 9
is minimum from Theorem 6.1, the multiple LUT cascade is optimum when
p = 11 and r = 9. In this case, a realization with g = � k

2r−1� = � 2044
29−1� = 4

LUT cascades is optimum. Also, the number of levels is �n−r
p−r � = �32−9

11−9� = 12,
which shows that each LUT cascade consists of 12 cells. Finally, we need a
special encoder. Let v1 be the value of the outputs of the top LUT cascade, let
v2 be the value of the outputs of the second LUT cascade, let v3 be the value
of the outputs of the third LUT cascade, let v4 be the value of the outputs of
the fourth LUT cascade, and let vout be the value of the outputs of the special
encoder. Then, we have the relation:

vout =




v4 + 1533 if v1 = v2 = v3 = 0 and v4 �= 0,
v3 + 1022 if v1 = v2 = 0 and v3 �= 0,
v2 + 511 if v1 = 0 and v2 �= 0,
v1 otherwise.

The optimum realization of r9p11g4 is shown in Fig 6. �
We also implemented the LPM address generator with n=32 and k=2040

on Xilinx Spartan-3 FPGAs (XC3S4000-5). Table 10 shows that r9p11g4 has
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Table 10. FPGA implementations of the LPM address generator with n=32 and k= 2040.

Design Level Slice Memory F clk tco Th. Areaa Th./Area Delay Area-Delay

(BRAM) (MHz) (ns) (Mbps) (slice) (
Mbps
slice

) (ns) (slice-µs)

r8p11g8 8 299 64 111.20 26.00 1223 6443 0.190 97.94 631.04
r9p11g4 12 241 48 111.33 23.00 1225 4849 0.253 130.79 634.19

aWe assume that the area for one BRAM is equivalent to the area of 96 slices.
r8p11g8 denotes the FPGA implementation with r=8, p=11, and g=8.
r9p11g4 denotes the FPGA implementation with r=9, p=11, and g=4.

almost the same throughput and area-delay as r8p11g8, but its area is only
75% of r8p11g8. In addition, r9p11g4 has higher throughput/area than that
of r8p11g8. Thus, r9p11g4 is the optimum realization for the LPM address
generator with n=32 and k=2040.

7 Conclusions

In this paper, we presented the multiple LUT cascade to realize LPM address
generators. In addition, we discussed an approach to obtain the optimum con-
figuration of multiple LUT cascade on FPGAs. Although we illustrated the
design method for n = 32 and k = 504 ∼ 511, it can be extended to other
values of n and k.

We implemented four LPM address generators (i.e. r6p11, r7p11, r8p11, and
r9p11) on the Xilinx Spartan-3 FPGA (XC3S4000-5) by using the multiple
LUT cascade. For comparison, on the same type of FPGA, we also imple-
mented Xilinx’s proprietary TCAM and Reg-Gates, an approach proposed by
us as a likely solution to the LPM problem. Xilinx’s TCAM has the small-
est delay, but requires many slices. Reg-Gates has almost the same delay as
Xilinx’s TCAM, but requires the largest area, and requires about three times
as many slices as Xilinx’s TCAM. All multiple LUT cascade realizations have
higher throughput, smaller area, higher throughput/area and more efficient in
terms of area-delay product than Xilinx’s TCAM.
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